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Abstract

Osteosarcoma is a debilitating bone cancer that affects
humans, especially children and adolescents. A homologous
form of osteosarcoma spontaneously occurs in dogs, and its
differential incidence observed across breeds allows for the
investigation of tumor mutations in the context of multiple
genetic backgrounds. Using whole-exome sequencing and dogs
from three susceptible breeds (22 golden retrievers, 21 Rottwei-
lers, and 23 greyhounds), we found that osteosarcoma tumors
show a high frequency of somatic copy-number alterations
(SCNA), affecting key oncogenes and tumor-suppressor genes.
The across-breed results are similar to what has been observed
for human osteosarcoma, but the disease frequency and somatic
mutation counts vary in the three breeds. For all breeds, three
mutational signatures (one of which has not been previously
reported) and 11 significantly mutated genes were identified.

TP53 was the most frequently altered gene (83% of dogs have
either mutations or SCNA in TP53), recapitulating observations
in human osteosarcoma. The second most frequently mutated
gene, histone methyltransferase SETD2, has known roles in
multiple cancers, but has not previously been strongly impli-
cated in osteosarcoma. This study points to the likely importance
of histone modifications in osteosarcoma and highlights the
strong genetic similarities between human and dog osteosarco-
ma, suggesting that canine osteosarcoma may serve as an excel-
lent model for developing treatment strategies in both species.

Significance: Canine osteosarcoma genomics identify SETD2
as a possible oncogenic driver of osteosarcoma, and findings
establish the canine model as a useful comparative model for the
corresponding human disease. Cancer Res; 78(13); 3421–31. �2018
AACR.

Introduction
Osteosarcoma is an often fatal form of bone cancer occurring

in humans, predominantly in the adolescent age group. It
accounts for 2.4% of pediatric cancers and has a greater inci-
dence in males than females (1). In addition, late onset of
osteosarcoma is seen in adults over 65 years of age, with a
similar male to female ratio, and frequently occurs as a second
malignancy comorbid with the osteoclastic Paget disease (2).
Osteosarcoma can occur in any bone, though most often it is
found in the extremities of long bones near the metaphyseal
growth plates (1). The tumor is thought to arise from primitive
mesenchymal bone-forming cells that produce malignant oste-
oid (3). The global 5-year survival rate for osteosarcoma is 80%,
but metastatic osteosarcoma is hard to control, with a 5-year
survival of only approximately 46% (4).

Early molecular analysis of human osteosarcoma tumors
using array-based methodologies highlighted somatic copy-
number alterations (SCNA) in cancer genes as one of the
significant features of the disease (5). In addition, genome-
wide association studies, epigenetic studies, and mRNA and
miRNA expression profiles have identified genetic changes
affecting the disease (6–8). Recent efforts have used both
whole-exome and/or whole-genome sequencing of osteosarco-
ma tumor/normal pairs to study the pathogenesis of osteosar-
coma as well as its somatic progression (9–11). TP53 tumor
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mutations were observed in 75% of the 59 human patients
studied (11), whereas recurrent somatic alterations were
found in RB1, ATRX, and DLG2 in addition to TP53 (9). Both
these studies demonstrated a predominance of structural var-
iation in the form of SCNAs in osteosarcoma, whereas relatively
few somatic point mutations (SPM) and indels were found. The
authors also reported complex chains of rearrangements and
localized hypermutation across the genome in most samples.
Thus, although multiple layers of data exist, the mechanism of
progression from germline predisposition to somatic changes
in osteosarcoma tumorigenesis is not yet understood (7).

Every year, almost 10 times as many dogs are diagnosed with
osteosarcoma as humans (12). In contrast to human osteosar-
coma, canine osteosarcoma typically affects middle-aged dogs
from large or giant breeds such as golden retriever (Golden),
Rottweiler (Rott), and greyhound (GreyH). Sex is not a factor
contributing to disease susceptibility among the various breeds,
but the size of the dog does matter, with large and giant dogs
(>25 kg) accounting for 90% of all cases of osteosarcoma (13).
A study of bone tumors among 400,000 dogs in Sweden (14)
showed, after correcting for average life span (dog-years at risk,
DYAR), that dog breeds have different rates of disease inci-
dence, which is indicative of a genetic predisposition for the
disease. For example, Goldens are seen to have a lower inci-
dence when compared with GreyHs and Rotts (incidence rates
are 6, 30, and 36 cases per 10,000 DYAR, respectively; ref. 14).
Although osteosarcoma has a later onset in dogs than in
humans, both have comparable clinical representation, and
canine osteosarcoma in predisposed breeds is known to be
most similar to human pediatric osteosarcoma (12, 15). In
both species, the primary bone tumor consists of malignant
stroma (connective tissue cells) and has as a hallmark osteoid
formation by the malignant osteoblasts (16). In keeping with
common tumor sites between humans and dogs (13), parallel
treatment options are offered, including limb-sparing proce-
dures and adjuvant chemotherapy (15).

Earlier canine osteosarcoma studies have provided key
insights into disease biology and genetic predisposition. In our
previous genome-wide association study of >300 cases and
controls from three breeds (GreyH, Irish wolfhound, and Rott),
we identified 33 significant loci that explained 50% to 80% of
phenotypic variance in these breeds. These loci contain genes
such as OTX2 and BMPER that are known to be involved in
bone morphogenesis and to affect bone health (17). In an
oligonucleotide array comparative genome hybridization
(oaCGH) study, it was shown that copy-number alterations in
dogs are relatively orthologous to what is found in humans
(18). Analyzing 123 dog osteosarcoma tumors (18), the
authors found that the genomic imbalance in the two species
is similar, and the expression levels of some of the shared genes
(e.g., RUNX2, TUSC3, and PTEN) are correlated with the ploidy
changes. Nevertheless, the lack of a deep understanding of the
genetic causes of tumor variation in canine osteosarcoma limits
the use of this naturally occurring model for understanding the
human disease. Here, we performed whole-exome sequencing
(WES) of matched tumor–normal (T/N) pairs in three breeds
(Golden, GreyH, and Rott), all predisposed to osteosarcoma
but with different lifetime risks. The goals here were to discover
putative candidate driver genes, to evaluate if dogs share
mutated genes with humans, and, lastly, to detect potential
differences among breeds. The results in all three breeds con-

firm observations in human osteosarcoma, with a majority of
individuals showing high levels of copy-number alterations
and TP53 mutations. In addition, we also find multiple muta-
tions in the SETD2 gene, which only once has been described in
human osteosarcoma (19).

Materials and Methods
Matched tumor normal sample collection

Tumor and normal tissue samples from a total of 70 matched
pairs (23 sample pairs for golden retriever and Rottweiler and
24 greyhound) were collected by coauthors or provided by the
Pfizer Canine Comparative Oncology and Genomics Consor-
tium (CCOGC) Biospecimen Repository. Study inclusion was
voluntary. All samples (blood samples and leftover tissue from
removal of spontaneously acquired tumors) were taken by the
dogs' veterinarian. All work was performed in accordance with
ethical guidelines and is covered by the ethical approval IACUC
0064-08-15 (Lindblad-Toh, Broad Institute).

Library construction, exome capture, and sequencing
Exome libraries of genomic DNA isolated from osteosarcoma

tumors and their matched normal tissue were generated
via a Roche NimbleGen custom design canine exome array
(120705_CF3_Uppsala_Broad_EZ_HX1) and submitted for 76
base paired-end Illumina sequencing on HiSeq 2000 platform,
with a minimum target coverage of 30� for the normal and
60� for the tumor samples.

Exome alignment and somatic variation calling
SPMs and somatic indel mutations (SIM) were identified

using a standard workflow methodology (Supplementary Fig.
S1). Seventy matched tumor and normal sequence reads from
the three breeds were aligned against the dog genome assembly
of CanFam3.1 using BWA 0.7.10 with default options. The
BWA alignment BAMs, prior to somatic variant calling with
the algorithm MuTect2, were refined in accordance with
Genome Analysis Toolkit's recommended best practices (Sup-
plementary Fig. S1). Tools and databases used for all of the
methods are listed in Supplementary Table S1. SPMs and SIMs
were subsequently identified in 66 samples that passed quality
threshold criteria with MuTect2. The unfiltered calls were
then passed through a set of filters to reduce germline artifacts.
The first filter was with Panel of Normal (PON) calls, which was
built on a set of normal samples from three dog cancers using
SAMTools. Variants present in >2 samples in the PON were
filtered out. A second filtering was based on the removal
of population variation present in the dog dbSNP database
(Build ID: 146), and germline mutations called on 160 dogs
across 8 breeds (unpublished data). Further false-positive calls
that may arise due to oxidative DNA damage were filtered out
in accordance with methods by Costello and colleagues (20).
The last filter applied was to remove calls that were outliers
based on a boxplot of the read depth values corresponding to
the variant calls.

Annotation of the somatic variants using SnpEff
Functional consequences of variants were predicted using the

tool SnpEff 3.3 (21). SnpEff annotations of the SPMs and SIMs
were categorized as nonsynonymous or missense mutations,
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synonymous or silent mutations, stop-gain or nonsense muta-
tions, frameshift, and splice site mutations.

Identification of significantly mutated genes with MuSiC
To find putative driver genes, the nonsilent mutations from the

SnpEff annotations were run through the program Genome
MuSiC 0.4. Default options were used, except for two parameters:
the false discovery rate threshold was fixed at 0.1, and the flag to
merge concurrent mutations in a given gene was turned on.

Mutational signature discovery with Bayesian NMF
The mutational signature discovery where SPM or SIM

counts in each sample, stratified by mutation context, was
performed using The Broad Institute's Bayesian nonnegative
matrix factorization (NMF) algorithm. The comparison of the
signatures discovered in the dog dataset and the standardized
COSMIC signatures was performed using standard hierarchical
clustering.

Pathway analysis for the significantly mutated genes using
ENRICHR/Kyoto Encyclopedia of Genes and Genomes 2016

Functional assessment of the significantly mutated genes
(SMG) predicted by MuSiC was performed using ENRICHR with
default options. The gene sets were subject to the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway (2016) enrich-
mentwith a threshold set at a cutoff of P <0.05 to select significant
pathways.

Somatic copy-number detection with VarScan2
SCNAs in the tumor sample that are not present in the normal

sample were identified using VarScan2 (http://varscan.source
forge.net/copy-number-calling.html). The raw calls were sub-
jected to circular binary segmentation to delineate segments by
copy number and to categorize major regions with alterations.
Finally, a custom Perl script was used to merge similar adjacent
events.

Identification of recurrent SCNAs with GISTIC 2.0
To identify recurrent SCNAs, the tool GISTIC 2.0 was used.

Default options were used, and 64 of 66 samples passed through
the cutoff threshold of 5,000 for the flagmax seg, a measure of the
copy-number segments and a mandatory parameter for GISTIC
2.0 analysis. Two samples, Golden.04 with 5,436 and GreyH.05
6,352 copy-number segments each, were omitted from the final
analysis as these values were > 5,000.

Detection of germline mutations in key osteosarcoma genes
A total of 8 genes previously found associated with human

osteosarcoma by genome-wide association study (GWAS; gene-
desert on chromosome2p25.2not analyzed; refs. 6, 22), the canine
top associated locus (17), as well as those implicated in human
syndromes featuring a heightened frequency of osteosarcoma (23)
were examined for mutations in our germline exome data.

Data access
All data used in this article are available from NCBI BioProject

(https://www.ncbi.nlm.nih.gov/bioproject) under the entry
PRJNA391455. Raw sequencing reads are available from the
NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/
sra). Identified mutations are displayed in the CamFam3.1 Track

Hub Broad Improved Canine Annotation v1 (https://genome.
ucsc.edu/cgi-bin/hgHubConnect) under the name osteosarcoma
somatic variants.

Results
WES of tumor/normal pairs from three breeds

To characterize somatic mutations in canine osteosarcoma
tumors, 70 matched tumor/normal pairs were collected and
used to generate whole-exome sequence data (Supplementary
Table S2). The samples included 46 male and 24 female dogs,
similarly distributed across the three breeds. The age at diag-
nosis varied from 3 to 12 years, with a median of 8.5 years in
GreyHs and 9.0 years in both Rotts and Goldens. The location
of tumors included humerus, femur, radius, tibia, and others.
The canine exome array contains approximately 57 Mb of
sequence representing more than 85% of the coding sequence.
Sixty-six pairs of samples (22 Golden, 23 GreyH, and 21 Rott)
passed the quality thresholds, with a median sequence depth of
136x (range, 90–176) for the tumor and 95x (range, 31–166)
for the normal samples.

SCNAs occur extensively in all three breeds
VarScan2 followed by circular binary segmentation across all

three breeds identified a large number of SCNAs. The Goldens
had on average more of the genome covered by amplifications
(mean �230 Mb) compared with Rott (�200 Mb) and GreyH
(�170 Mb). A similar trend was also observed for deletions
(Golden �620 Mb, Rott �530 Mb, GreyH �440 Mb each). Of
the 64 samples passing the threshold criteria, 19 broad or large-
scale (corresponding to more than half the length of the
chromosome in which they occur) and 67 focal (1–11 Mb)
amplification and deletion events were found per sample using
GISTIC 2.0 (Fig. 1A; Supplementary Table S3). For 27 of 38
autosomes, more than 50% of samples had a focal lesion. For
seven of these chromosomes (i.e., 13, 16, 18, 20, 21, 25, and
38), the number of samples with focal lesions surpassed 80%
(Supplementary Fig. S2).

We found that the chromosomal regions corresponding
to recurrent focal amplifications and deletions contained
numerous cancer-related genes (Fig. 1B; Supplementary
Tables S4–S6). Downstream analyses of genes affected by
SCNAs are limited to focal lesions only, because estimating
large-scale events with WES data is at best suggestive. The genes
in focal SCNAs that were altered in more than 50% of all
samples across all breeds included TP53, CDKN2A/B, HRAS,
and PTEN. These are among the top 20 genes previously
implicated in human and/or canine osteosarcoma (24, 25).
In addition, we identified more cancer genes with no previously
known roles in osteosarcoma, including HIPK2 and EDNRB,
all of which have focal lesions in more than 80% of all samples
across the three breeds. These findings from WES analysis
showed extensive correlation with oaCGH profiles of 22 cases
from the same cohort, both at the level of large chromosomal
segments of DNA copy-number imbalance and for focal lesions
involving key cancer genes (Supplementary Fig. S3; Supple-
mentary Material; Thomas and colleagues manuscript in
preparation).

Pathway enrichment analysis for the 248 genes classified as
recurrently altered by GISTIC was performed using ENRICHR
(Supplementary Table S7; ref. 26). The most significant

Mutational Landscape in Canine Osteosarcoma

www.aacrjournals.org Cancer Res; 78(13) July 1, 2018 3423

on February 10, 2019. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 3, 2018; DOI: 10.1158/0008-5472.CAN-17-3558 

http://varscan.sourceforge.net/copy-number-calling.html
http://varscan.sourceforge.net/copy-number-calling.html
https://www.ncbi.nlm
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://genome.ucsc.edu/cgi-bin/hgHubConnect
http://cancerres.aacrjournals.org/


pathway was the cytokine–cytokine receptor interaction path-
way. The genes in this pathway include BMPR1B, a receptor
involved in bone formation and a molecular target in breast
cancer metastases, six interleukin family members that affect
inflammation and regulate immune response, and four genes

from the TNF receptor superfamily. The second significant
pathway was the PI3K–Akt signaling pathway, which is thought
to play an essential role in the initiation and development of
human osteosarcoma and is considered to be a potential
therapeutic target (27).
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Figure 1.

Regions of somatic copy-number aberrations in canine osteosarcoma.A,GISTIC identifies regions of recurrent copy-number amplifications (red) aswell as deletions
(blue) across the autosomes. Cytobands of recurrently altered regions are denoted on the y-axes. The green line indicates significant enrichment of copy-number
changes. B, Top eight tumor-suppressor genes and top nine oncogenes with recurrent SCNAs across the breeds. Amp, amplifications; Del, deletions.
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Variable rates of somatic mutations across breeds
Analysis of the exome sequence data using Mutect 2 revealed a

total of 7,900 SPMs and 1,197 SIMs across all individuals. The
average numbers of SPMs and SIMs were different among the
breeds (one-way ANOVA, P value 0.03; Fig. 2A and B; Supple-
mentary Table S2), and a post hoc analysis showed that theGoldens
had significantly higher averages than GreyHs (Tukey test, P value
0.03; Fig. 2A). The Golden group also had a wider range of
mutations, showing a higher median of 133 SPMs (129 when
excluding two outliers), compared with 113 SPMs in Rotts and 97
SPMs inGreyHs (Table 1). There was little overlap in the SPM and
SIM calls among the three breed groups (Supplementary Fig. S4A
and S4B). SnpEff, used to annotate the SPMs and SIMs, detected
protein-modifying changes in 2,041 genes. Of these, 290 genes
were altered in twoormore samples irrespective of breed (n¼66),
whereas 71 genes hadmutations present in three ormore samples.
Again, the Goldens harboredmore nonsilent mutations (mean of
54 per sample) compared with the Rotts (48 per sample) and
GreyHs (40 per sample). No correlation was observed across
breeds between the somatic mutation burden and sex or tumor
location; however, the total number of somatic mutations in all
breeds combined was positively correlated with increasing age at
diagnosis (Spearman correlation r ¼ 0.3, P value 0.03; Supple-
mentary Fig. S5).

SPMs across the three breeds show three distinct mutational
signatures including a novel one

To delineate the mutational processes occurring in canine
osteosarcoma, we performed a de novo mutational signature

analysis across all tumor samples using a Bayesian NMF meth-
odology. Our study identified three distinct mutational processes
(Fig. 3A). The first profile, which is the most common, has
the hotspot motif C>T in the CpG nucleotide context, similar to
what is seen in the COSMIC 1 aging–associated signature (http://
cancer.sanger.ac.uk/signatures/Signature-1.png). In this study,
the COSMIC 1 signature had a distinct representation of the
C>A mutations. The C>A and C>T signals were not separable
by NMF and mostly co-occurred across samples. The second
signature, COSMIC 17 (http://cancer.sanger.ac.uk/signatures/
Signature-17.png), is a motif for which the etiology has not
been ascertained in humans. The third signature, characterized
by T>G transversions, is novel, having not previously been
described in human cancers.

Although all three mutational signatures were found in all
breed groups, the contribution of each signature per sample
indicates that there is a difference in the representation of signa-
tures among the three breeds (Fig. 3B). Tests for enrichment based
on themean contribution of each signature per breed showed that
the GreyHs and Rotts have a higher rate of the COSMIC 1–like
signature (�85% each, P value 0.01), whereas the novel signature
is more prevalent in the Goldens (24% signature activity in
Golden, P value 0.01; Supplementary Fig. S6).

Eleven genes are significantly mutated
Significantly mutated genes (SMG, genes that have a statis-

tically higher rate of mutation than the estimated background
rate) that are enriched for nonsilent mutations are likely to
be drivers in the development of cancers. Using the MuSiC
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Table 1. Summary of somatic point and indel mutations across the three breeds

Breed Median SPM Median SIM Mean SPM Mean SIM Mean SPM/Mbp Mean SIM/Mbp
Mean nonsilent

mutations
Total
SMGs

Golden (n ¼ 22) 133 16 148 21 1.4 0.19 54 10
GreyH (n ¼ 23) 97 12 101 14 0.9 0.13 40 6
Rott (n ¼ 21) 113 22 110 20 1.0 0.19 48 7
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algorithm, the analysis of all breeds together identified a total
of 11 SMGs (default criteria, 10% false discovery rate; Supple-
mentary Table S8; Fig. 4). The top three mutated genes across all
samples were, in order, TP53, SETD2, and TANGO. TP53, tumor
protein 53, had mutations in roughly 60% of all samples
(Goldens 55%, Rotts 67%, and GreyHs 61%). SETD2 was
mutated in 21% of samples (Goldens 32%, Rotts 19%, and
GreyHs 13%) and showed a variety of mutation types
(frameshift, nonsense, splice, and missense mutations). Anal-
yses of nonsilent mutations with MutSigCV (software.broad-

institute.org/cancer/software/genepattern/modules/docs/Mut-
SigCV) and tests that prioritize genes with high-impact muta-
tions, as discerned by Ensembl Variant Effect Predictor (VEP),
reiterate TP53 and SETD2 as top putative drivers (Supplemen-
tary Tables S9 and S10).

The 11 SMGs were further examined for functional roles in
known KEGG pathways using ENRICHR (26). This analysis
showed that many cancer-related pathways that include TP53,
and one pathway that includes SETD2, were found to be signif-
icantly overrepresented (Supplementary Table S7).
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Similar to human cancers, many mutations in TP53 are found
within protein domains

TP53 was the most frequently altered gene among the three
breed groups. Note that 83%of all samples showed TP53 as being
affected either by a point mutation and/or by an SCNA (Fig. 5A).
TP53 is also the only gene common to both the SMGs and the
recurrent SCNA gene lists. A total of 41 nonsilent mutations were
distributed along the gene (Fig. 5B). More than 85% of these
mutations occurred in protein domains and show a similar
pattern with the mutations found in TP53 in human osteosarco-
ma. VEP predicted 15 of the 41 sites to be "high"-impact muta-
tions, i.e., mutations that are likely to have a disruptive effect on

the gene, leading to its loss of function (Supplementary Table
S11). Furthermore, there was a significant increase in the amount
of SCNAs present in dogs with TP53 loss-of-function mutations
(one tailed t test, P value 0.01).

SETD2 is mutated in 21% of the samples
The second most frequently mutated gene, SETD2, encodes a

histone methyltransferase (HMT) that trimethylates histone H3
lysine 36 (H3K36me3). The gene showed a total of 17 nonsilent
mutations (9 frameshift, 2 splice site, 5 nonsense, and 1missense
mutations) across 21% of the tumor samples (Fig. 5C). Of these
mutations, 16 are predicted by VEP to be high-impact mutations
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Somatic mutations in TP53 and SETD2, and germline mutations in CDKN2A/B. A, TP53 somatic mutations and SCNAs per individual across breeds. Colored boxes
correspond to different mutation types, and the background color represents amplifications (red) and deletions (blue). B, Distribution of canine mutations
lifted over to the human TP53 protein shows that the majority of mutations are in the DNA-binding domain. C, Distribution of mutations within the SETD2 protein is
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(Supplementary Table S12). Projecting the mutational changes
from the canine SETD2 gene to the orthologous human protein
showed that the mutations occurred across the gene, similar to
what is observed in other human cancers (COSMIC and cBio-
Portal databases). As SETD2 is an HMT, we decided to investigate
if our nonsilent mutation dataset included variants that could
lead to protein changes in other histone-modifying genes. Exam-
ining 68 additional genes (excluding SETD2; Supplementary Fig.
S7),we foundmutations in 14 samples (3Goldens, 3GreyHs, and
8 Rotts). Nine samples had mutations in HMTs, four in histone
acetyltransferases (HAT), and one in histone deacetyltransferases
(HDAC; Supplementary Fig. S7). In total, 36% of samples had a
mutation in at least 1 histone-modifying gene. Because these
genes were found using a targeted approach, we could not use
the resultant gene information for enrichment analysis.

Detection of germline variants in genes previously
associated with genetic predisposition to osteosarcoma in
humans and dogs

The different lifetime risks for developing osteosarcoma among
the breeds in our study suggest the possible presence of inherited
risk factors that could confer susceptibility to the disease. We
therefore inspected our data for the occurrence of nonsilent
coding germline mutations in key genes previously implicated
inGWAS for canine (17) andhumanosteosarcoma (6, 22), aswell
as genes responsible for familial syndromes with an increased
risk for osteosarcoma (Supplementary Fig. S8; refs. 28–31). Over-
all, 59 of the 66 samples had at least one germline candidate
mutation with moderate- or high-impact VEP effects in genes
previously reported to increase the risk of osteosarcoma. These
includedCDKN2A/B (n¼20),GRM4 (n¼12),NFIB (n¼1),TP53
(n ¼ 1), RB1 (n ¼ 1), BLM (n ¼ 23), and WRN (n ¼ 28;
Supplementary Fig. S8; Supplementary Table S13). Most prom-
inently, CDKN2A/B previously implicated in canine osteosarco-
ma predisposition (17) shows germline protein-modifying
changes across several samples (Fig. 5D). In the Rotts, 67%
(14/21) of the cases harbor a moderate N18Dmissense mutation
(BICF2P440554, chr11:41,226,002). In contrast, only 9% of
Goldens (2/22; one frameshift and one missense) and 4% of
GreyHs (1/23; one missense) had protein-modifying mutations
in CDNK2A. Five missense mutations were observed in the
CDKN2B locus (Goldens 3/22, Rotts 2/21). Similarly, germline
mutations in BLM are predominantly seen in GreyHs (52%) and
Rotts (52%), and mutations in WRN are seen in Goldens (55%)
and GreyHs (65%). Thus, the presence of candidate mutations in
different genes in different breeds suggests that genetic back-
ground shows variability across the breeds and these potentially
may also affect the somatic mutational spectrum.

Discussion
For the first time, we perform WES in three canine breeds

predisposed to osteosarcoma, and evaluating somatic changes,
we recapitulate and extend what has been observed in human
osteosarcoma. We find the mutational landscape in dogs reflect
what is observed in pediatric osteosarcoma—there are more
SCNAs than point mutations, and the average somatic mutation
burden across the species is of the same magnitude. At the point
mutation level, TP53 is the most frequently altered gene, with
most mutations in the DNA-binding domain. In human cancers,
inactivating mutations in the TP53 gene may disrupt checkpoint

responses to DNA damage, often leading to genomic or chromo-
somal instability and aberrations and an increased risk for SCNAs
(32). In our dog dataset, we also see a correlation formore SCNAs
in tumors with TP53 loss of function.

The canine set of 248 recurrently altered genes (Supplementary
Table S14) included known tumor suppressors such as TP53,
CDKN2A/B, PTEN, and DCL1, as well as genes not previously
known to have frequent SCNAs in human osteosarcoma. For
instance, the tumor-suppressor gene EDNRB is deleted in more
than 80% of the canine samples and is often downregulated in
other human cancers (33). Interestingly, EDNRB is a nonspecific
receptor for EDN1 that has been implicated in promoting tumor-
igenesis in canine osteosarcoma (34). Constituents of the
endothelin axis (EDN1 and its associated receptors) are known
to be impaired/dysregulated in human cancers and have been
explored as novel anticancer therapeutic targets (35, 36). HIPK2,
homeodomain-interacting protein kinase 2, is also altered in more
than 80% of the samples and was shown to increase tumor
production upon inactivation (37). HIPK2 also has a role in TP53
regulation and has been proposed as a candidate therapeutic
target (38).

The RB1 gene, one of the constituents of the cell-cycle control
pathway that includes the CDKN2A/B locus, is often mutated in
human osteosarcoma (39). However in the current canine anal-
ysis, SCNAs encompassing the RB1 locus were only observed in
6% of tumors. In the absence of RB1 gene mutations, CDKN2A/B
is often deleted or inactivated, likely leading to deregulation of the
cell-cycle control pathway in high-grade human osteosarcomas
(40). We note that CDKN2A/B shows copy-number alterations in
78% of our canine samples and has germline candidate protein-
changing mutations in 81% of Rott samples. In addition, non-
silent germline variants in the RB1 gene, which is known to be
altered in 30% to 75% of human osteosarcoma (1), only affected
1 of the 66 samples in our study. It therefore can be hypothesized
that canine CDKN2A/B mutations could replace the RB1 muta-
tions often seen in human osteosarcoma.

The p14ARF (known as p19ARF in the mouse, encoded by
isoform 2 of CDKN2A) protein binds MDM2, thereby preventing
p53 degradation (41). Somatic mutations of CDKN2A are very
common in human cancers (42), and germline mutations are
associated with familial melanoma, glioblastoma, and pancreatic
cancer (43). Analysis of the germline risk data and somatic
changes showed that 83% of individuals across the three breeds
had either a germline risk variant and/or a somatic copy-number
aberration affecting CDKN2A, thus strengthening the role of
this gene in canine osteosarcoma initiation and progression.
Importantly, the germline risk variant common in Rotts only
affects CDKN2A isoform 1, thereby only altering p16INK4a. We
thus conclude that similarly to the human disease (7), both the
p53 and the RB1 pathways are likely key players in canine
osteosarcoma.

SETD2, a known tumor-suppressor gene in numerous human
cancers (44–46), and only recently found to be mutated in less
than2%of humanosteosarcoma samples (19), hadpreviously no
recognized roles in canine osteosarcoma. Here, we found SETD2
mutations in 21%of tumors including dogs from all three breeds.
Changes in SETD2 in different human cancers have been associ-
ated with a variety of clinical consequences. For example, in clear
cell renal cell carcinoma, loss of SETD2 through lowered mRNA
expression is known to be associated with the aggressive form of
the disease, likely leading to poorer survival outcome (47).
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Similarly, in a breast cancer study, (48), it was shown that the
mRNA expression level of SETD2 correlated with the severity of
clinical parameters, in that patients with metastasis or recur-
rence had lower expression levels of the gene compared with
patients who were disease free. In a study involving bone and
soft-tissue sarcomas in humans, SETD2 was found to be a
putative driver in synovial sarcomas (49). The authors also
included osteosarcoma as part of their investigation, but
reported no mutations in SETD2 for it. Curiously, in the
analysis of 24 individuals afflicted by chordoma, a rare bone
sarcoma found in the skull, SETD2 was the most frequently
altered gene (14/24) either through point mutations or through
copy-number losses (50). In our present study, we did not
observe any SCNA changes in SETD2, only point or frameshift
insertion/deletion events that are likely damaging. The variant
allele fraction (VAF; fraction of alleles that are mutated for a
given sample) distribution for SETD2 was significantly enriched
for high VAF values (Wilcoxon rank test, P value < 0.01) and
consequently has an elevated mean VAF of 0.44, compared with
0.20 for the set of all detected mutations. This pattern is similar
to that observed for TP53 (Wilcoxon rank test, P value < 0.01,
mean 0.54), leading to the hypothesis that the somatic changes
in both genes might have been early clonal events that occurred
before the onset of carcinogenesis. Thus, it is possible that
SETD2 might also be a putative driver for canine osteosarcoma
akin to TP53.

Furthermore, when we examined other histone modifiers/
methyltransferases that included HATs, HDACs, and HMTs, and
taking into account the SETD2mutations, we found that a total of
36%of samples havemutations in these genes. Histonemodifiers
are known to be frequently disrupted in cancer causing tumor-
igenic alterations and tumor proliferation (51). Therefore, they
are regarded as potential drug targets (52), and inhibitors of
HDACs and HMTs are in clinical trials for a number of human
cancers (53). This may suggest that histone modifier inhibitors
could be tried in patients with osteosarcoma as well (54).

Patterns of somatic changes in human tumor cells, referred to as
"mutational signatures," have been increasingly characterized in
recent years (55). We identified three distinct mutational signa-
tures active in canine osteosarcoma. An aging-associated signa-
ture, COSMIC 1–like, has been previously reported in human
osteosarcoma (9) and is the most common signature across the
three breeds. The second signature, COSMIC 17, though not
observed in human osteosarcoma, is a common signature in
several other human cancers such as liver, lymphoma, and stom-
ach cancers (55). The third signature is likely a novel signature
with frequent T>G transversions not previously reported. Inter-
estingly, in the studyof humanosteosarcoma inwhich31 samples
(mostly pediatric cases) were analyzed using WES (10), the
dominantmutational signature foundwasCOSMIC3, a signature
that is most often associated with BRCA1/2 mutations in breast
cancers. In our dog dataset, we find no evidence for this signature.
Although all three signatures are present in all breeds, there is
considerable difference in their distribution. The Rotts and
GreyHs show a dominance of the aging signature (accounting
for �85% of mutational profiles for both breeds), whereas
COSMIC 17 and the novel signature show enrichments in the
Goldens. We hypothesize that the differences might be the result
of the genetic background present in the different dog breeds. This
along with the mechanisms underlying this signature needs to
be further examined.

In addition to finding breed differences in the mutational
signatures, we also noted breed differences in the candidate
protein-altering germline mutations found in different breeds:
the CDKN2A and BLM genes were commonly mutated in Rotts,
theWRN andBLM genes hadmutations inGreyHs, and theGRM4
andWRN genes were mutated in Goldens. In addition, Goldens,
which have a lower disease frequency than the other breeds,
appeared to have more SCNAs as well as SPMs and SIMs. (It is
likely thatGreyHs andRottswith relatively higher susceptibility to
osteosarcoma than Goldens may need fewer mutations for trig-
gering carcinogenesis.) Although it is too early to connect these
findings, it will be interesting to try to unravel the effects of genetic
background on tumor initiation and progression and study the
candidate genes further to elucidate their roles in osteosarcoma.

In summary, by analyzing WES data for canine osteosarcoma
tumors across three breeds, we identified both SMGs and SCNAs
that are likely to include driver genes and noted multiple simi-
larities between canine and human osteosarcoma, while also
identifying several breed differences. Similarly to what is reported
for human osteosarcoma, we found a large number of SCNAs and
frequent mutations in TP53. In addition, we found that SETD2 is
frequently mutated in canine osteosarcoma tumors. Both these
genes are known cancer genes, but SETD2 so far has not been
explicitly linked with osteosarcoma and along with other histone
modifiers that are being altered may offer novel opportunities for
targeted therapy. Intriguingly, SETD2 is known to regulate TP53,
whereas CDKN2A/B, which shows both germline and somatic
mutations, affects both TP53 and RB1. Although we expected
multiple differences between the breeds, the recurrent SCNAs and
tumor mutations affecting key genes were surprisingly similar;
however, germline coding candidate mutations in CDKN2A,
GRM4, BLM, and WRN as well as one mutational signature was
foundmore frequently in some breeds than the others. Finally, we
believe that the insights learned from this study not only serve to
inform dog osteosarcoma biology, but also highlight the useful-
ness of the canine disease models for enhancing our current
understanding of the corresponding human disease.
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